A Traffic Information Publication with Privacy Preservation
نویسندگان
چکیده
We are experiencing the expanding use of location-based services such as AT&T TeleNav GPS Navigator and Intel’s Thing Finder. Existing location-based services have collected a large amount of location data, which have great potential for statistical usage in applications like traffic flow analysis, infrastructure planning and advertisement dissemination. The key challenge is how to wisely use the data without violating each user’s location privacy concerns. In this paper, we first identify a new privacy problem, namely inference-route problem, and then present our anonymization algorithms for privacypreserving trajectory publishing. The experimental results have demonstrated that our approach outperforms the latest related work in terms of both efficiency and effectiveness.
منابع مشابه
Privacy Preserving Data Stream Classification Using Data Perturbation Techniques
Data stream can be conceived as a continuous and changing sequence of data that continuously arrive at a system to store or process. Examples of data streams include computer network traffic, phone conversations, web searches and sensor data etc. These data sets need to be analyzed for identifying trends and patterns, which help us in isolating anomalies and predicting future behavior. However,...
متن کاملimprovement of Location-based Algorithm in the Internet of Things
Location Based Services (LBS) has become an important field of research with the rapid development of Internet-based Information Technology (IOT) technology and everywhere we use smartphones and social networks in our everyday lives. Although users can enjoy the flexibility, facility, facility and location-based services (LBS) with the Internet of Things, they may lose their privacy. An untrust...
متن کاملDifferentially Private Event Sequences over Infinite Streams
Numerous applications require continuous publication of statistics for monitoring purposes, such as real-time traffic analysis, timely disease outbreak discovery, and social trends observation. These statistics may be derived from sensitive user data and, hence, necessitate privacy preservation. A notable paradigm for offering strong privacy guarantees in statistics publishing is ε-differential...
متن کاملPreserving Privacy Using Data Perturbation in Data Stream
Data stream can be conceived as a continuous and changing sequence of data that continuously arrive at a system to store or process. Examples of data streams include computer network traffic, phone conversations, web searches and sensor data etc. The data owners or publishers may not be willing to exactly reveal the true values of their data due to various reasons, most notably privacy consider...
متن کاملPrivacy by typing in the $\pi$-calculus
In this paper we propose a formal framework for studying privacy in information systems. The proposal follows a two-axes schema where the first axis considers privacy as a taxonomy of rights and the second axis involves the ways an information system stores and manipulates information. We develop a correspondence between the schema above and an associated model of computation. In particular, we...
متن کامل